
eProsima Dynamic Fast Buffers

User Manual
Version 0.2.0

The Middleware Experts
eProsima © 2013

1

eProsima
Proyectos y Sistemas de Mantenimiento SL
Ronda del poniente 2 – 1ºG
28760 Tres Cantos Madrid
Tel: + 34 91 804 34 48
info@eProsima.com – www.eProsima.com

Trademarks

eProsima is a trademark of Proyectos y Sistemas SL. All other trademarks used in this
document are the property of their respective owners.

License

eProsima Dynamic Fast Buffers is licensed under the terms described in the GNU Lesser
General Public License (LGPL).

Technical Support

• Phone: +34 91 804 34 48

• Email: support@eProsima.com

2

mailto:info@eProsima.com
mailto:support@eProsima.com
http://www.eProsima.com/

Table of Contents
eProsima Dynamic Fast Buffers...1

1 Introduction..4

1.1 Data Describing and Serializing..4

1.2 Main Features..5

2 Building an application...7

2.1 Describing data through a Typecode...8

2.1.1 Typecode creation syntax..8

2.2 Generating a specific Bytecode given a Typecode object......................................15

2.2.1 Bytecode for data serialization:...15

2.2.2 Bytecode for data deserialization:...16

2.3 Data serialization and deserialization..16

2.3.1 Data serialization:..16

2.3.2 Data deserialization...17

3 eProsima Dynamic Fast Buffers API..18

3.1 Typecode creation API...18

3.2 Bytecode generation API..18

3.3 Data serialization/deserialization API..18

4 Known Issues..19

5 HelloWorld example in Visual Studio 2010..20

5.1 Setting up the environment...20

5.2 Including headers...20

5.3 Data declaration and “FastCdr” object creation..20

5.4 Typecode creation..21

5.5 Bytecode generation..21

5.6 Data serialization..22

5.7 Buffer reset..22

5.8 Data deserialization and Typecode destruction...22

3

eProsima
DFB API

User/Developer
application

1 Introduction
eProsima Dynamic Fast Buffers is a high-performance dynamic serialization library,
which allows users to describe and serialize or deserialize data at run-time. Its
functionality is based on the creation of a typecode which defines the data, and the
generation afterwards of a bytecode to do the data serialization. There is no need for
users to know anything about the internal structure of the typecode or the bytecode,
neither of the serialization procedure.

This library uses eProsima Fast CDR, which is a library designed to serialize and
deserialize data in CDR (Common Data Representation) format. CDR is a transfer syntax
low-level representation for transfer between agents, which describes a mapping from
data types defined in OMG IDL (Interface Definition Language) to a byte stream.

IDL is a specification language, made by OMG (Object Management Group), which
describes an interface in a language-independent way, enabling communication
between software components that do not share the same language.

1.1 Data Describing and Serializing
In computer science, inside the context of data storage and transmission, serialization
is the process of translating data structures or objects' state into a format that can be
stored (for example in a file or a memory buffer) and recovered later in the same or
another computer environment.

When it comes to dynamic serialization, the native data has to be described somehow.
It is in this moment when eProsima Dynamic Fast Buffers comes in, providing the
functionality for doing it.

The data description may be done by using a typecode. This is just an entity that stores
information in order to provide full knowledge of the data described through it, taking
care only of the data type and not of its content or value. This avoids developers from
defining their data types inside an IDL file that would have to be parsed later at run-
time.

Once the data has been described, the application gets full knowledge of it and of how
to manage its content. At this moment, a bytecode can be generated in order to define
how this data types must be serialized, therefore, it is an internal definition of how to
perform this serialization.

The image below shows the library's functionality:

4

Typecode creation solicitude

Typecode (data description)

Bytecode generation solicitude

Bytecode (serialization method)

Serialization/Deserialization

1.2 Main Features
eProsima Dynamic Fast Buffers (DFB from now on) provides an easy way to describe
and serialize or deserialize native data which has been defined by the user. It brings
along these features:

• Data description through a typecode:

o A typecode is a way to describe how is the data that a user wants to use
in his application.

o Through this typecode, eProsima DFB knows how is the user's native
data and how to move through it.

o Avoids the developer from describing data in a static way using an IDL
file.

• Bytecode generation:

o This is just a way for DFB of knowing how to serialize the native data
defined by the user.

o There are two kinds of bytecode entities that can be generated: one for
data serialization, and another for data deserialization.

• Data serialization/deserialization:

o eProsima DBF features a way to serialize or deserialize data using a
FastCDR object provided by eProsima Fast CDR library.

o The serialized data will be stored inside a buffer defined by the user.

o The deserialized data will be restored in the user's native data type
previously defined.

• Support for different packaging strategies for structures:

o eProsima Dynamic Fast Buffers supports different packaging strategies
which can be selected by the user at compile time. This means that if it
comes the time when the user wants to pack the contents of his
structures by adding no padding, this library will still work.

 eProsima DFB has been tested using all available boundaries for
the native data types.

 This feature will only work in Windows, for in Linux this can only
be achieved using -fpack-struct option that gcc provides, and this
is only compatible with libraries compiled using that same flag.

 The use of pragma directives (designed to specify different
alignment for structures) is not supported, because of the
dynamic behavior of this library.

5

• Multi-platform:

o eProsima Dynamic Fast Buffers has been designed and tested for
different platforms. It supports Windows and Linux (Fedora and CentOS
distributions) Operating Systems, in both 32-bit and 64-bit architectures.

6

2 Building an application
eProsima Dynamic Fast Buffers allows a developer to easily describe its own native
data types using a typecode. It provides functions to serialize these data into a
previously created buffer and deserialize them back.

How the library defines or works with the users' data types must be transparent, so
there is no need for them to know any of that information. From the developer's point
of view, a Typecode object that represents the data can be created in his application,
and this object could be used afterwards for creating a Bytecode object.

This object will be used later to know how to serialize the user's data. In the same way,
how eProsima DFB uses this Bytecode object should be transparent for the developer,
for only the data description concerns to him.

eProsima DFB offers this transparency and facilitates the development. The general
steps to build an application which uses DFB library are these:

• Create a Typecode object that represents the data.

• Generation of a Bytecode object so that the library knows how to serialize or
deserialize the mentioned data.

• Serialize data into a FastBuffer object using the provided eProsima DFB API for
that task.

• Deserialize the data previously serialized into the user's native structures
(simple or complex).

This section describes the basic concepts of these four steps that a developer has to
follow to use eProsima DFB.

7

Typecode

 Kind

Typec

Kind

Typecode

Kind

Typecode

Kind

2.1 Describing data through a Typecode
A Typecode object is used by eProsima DFB to describe how the user's native data in
his application is. That is why this object must be created according to the data that will
be serialized later. If this definition is made wrong, eProsima DBF does nor guarantee a
successful execution.

eProsima DFB's typecode is defined by using a kind attribute (which specifies the data
type) and it may contain other Typecode objects inside it. The reason for that
representation is to provide the developers with a way to define complex data types
such as structures, inserting other simple or complex data descriptions inside them.

2.1.1 Typecode creation syntax

2.1.1.1 Simple types supported
eProsima DFB supports a complete variety of simple types that can be described by the
developer via the provided API functions. The following table shows the supported
types and the functions that must be called to create them.

TABLE 1: SPECIFYING SIMPLE TYPES IN IDL FOR C++
User Type C++ Sample Data Type Function for creation
char char charSample; createCharacter()

short int16_t shortSample; createShort()

unsigned short uint16_t shortSample; createShort()

int int32_t intSample; createInteger()

unsigned int uint32_t intSample; createInteger()

long int64_t longSample; createLong()

unsigned long uint64_t longSample; createLong()

float float floatSample; createFloat()

double double doubleSample; createDouble()

string std::string stringSample; createString()

bool bool boolSample; createBoolean()

8

...

2.1.1.2 Complex types supported
Complex types can be created by the developer containing simple types or other
complex types (if supported). These complex types can be used as containers for other
simple types or just to define complex data structures such as arrays. The following
table shows the supported type descriptions (typecodes), how they are defined in C++
programming language, and which is the function for creating them.

TABLE 2: SPECIFYING COMPLEX TYPES IN IDL FOR C++
User Type C++ Sample Data Type Function for creation
struct
(see note below)

struct structSample
{
 ...
};

createStruct(type1, type2,
 ..., typeN, NULL)

array std::array<type, size>
arraySample1();
type arraySample2[][]...[];

createArray(type, nDims, dim1,
 dim2, ..., dimN, 0)

bounded sequence std::vector<type>
sequenceSample(size);

createSequence(type, size)

Note: Structures may contain any kind of data type, but the other complex types cannot contain complex
data types.

2.1.1.3 Simple data types description
The functions used for doing simple data description are defined in this section. This
will be done through the creation of a typecode associated to the mentioned data.
These functions are used always the same way, and they have been designed to
provide the users with a simple API for data definition.

The functions of this API are defined in the class DynamicFastBuffers::TypecodeAPI.

Character data definition:

To describe a character data type, the function createCharacter must be used. By
calling it, the users will be able to obtain a Typecode object which describes this kind of
data.

This function is executed as it is shown below:

By using this function, a new object that defines a character data type will be allocated
in the previously declared pointer.

Short data definition:

In order to describe a short data type for being serialized, the function named
createShort, included in the TypecodeAPI class, must be used.

This function is shown in the following code sample:

Inside the object pointed by shortTypecode, there will be an instance of Typecode
whose kind represents a short data type.

9

DynamicFastBuffers::Typecode *shortTypecode;
shortTypecode = DynamicFastBuffers::TypecodeAPI::createShort();

DynamicFastBuffers::Typecode *characterTypecode;
characterTypecode = DynamicFastBuffers::TypecodeAPI::createCharacter();

Integer data definition:

To define a typecode which represents an integer value defined by the user, the
function createInteger must be used.

Long data definition:

In order to describe a long data type, the function createLong has to be used. An
example of how to use the mentioned function is shown below:

Float data definition:

To describe a simple precision floating point number, a function named createFloat
must be used. This function is also defined in the TypecodeAPI class, and it can be
accessed through DynamicFastBuffers namespace.

The next example shows how to create a Typecode object associated to a float data
type:

Double data definition:

The function used for describing a double precision floating point number is named
createDouble, and as the other functions it can be accessed via the TypecodeAPI class.

String data definition:

By using eProsima DFB, the user can also describe objects defined using std::string. The
function for describing this kind of objects is named createString.

In this example, the way to describe an std::string object by using eProsima DFB
Typecode API is shown.

Boolean data definition:

If any user wants to describe a boolean data type for serializing or deserializing it, the
TypecodeAPI class provides a function named createBoolean to do it. This function is
used as it is shown below:

10

DynamicFastBuffers::Typecode *stringTypecode;
stringTypecode = DynamicFastBuffers::TypecodeAPI::createString();

DynamicFastBuffers::Typecode *doubleTypecode;
doubleTypecode = DynamicFastBuffers::TypecodeAPI::createDouble();

DynamicFastBuffers::Typecode *floatTypecode;
floatTypecode = DynamicFastBuffers::TypecodeAPI::createFloat();

DynamicFastBuffers::Typecode *longTypecode;
longTypecode = DynamicFastBuffers::TypecodeAPI::createLong();

DynamicFastBuffers::Typecode *integerTypecode;
integerTypecode = DynamicFastBuffers::TypecodeAPI::createInteger();

DynamicFastBuffers::Typecode *boolTypecode;
boolTypecode = DynamicFastBuffers::TypecodeAPI::createBoolean();

2.1.1.4 Complex data types definition
On the other hand, if the user wants to describe complex data types, another set of
functions has to be used. These other functions have parameters that the mentioned
user must know in order to use them, which is a clear difference against the ones
described in the previous section.

There are three kinds of data types that can be defined though a typecode by using
eProsima DFB. These kinds are:

• Structures

• Arrays

• Sequences

Structure data definition:

When it comes to describing struct data types, the user must bear in mind that this
kind of types are composed by more simple or complex data types. This means that
there will be inner Typecode objects inside the external one used to describe the
structure.

In this case, the function used to create the typecode for the structure (whose name is
createStruct) is a little bit different from the previous ones. Nevertheless, the way to
use it is similar.

There are two main paths that may be chosen to describe a structure typecode. The
first one is to create the object and then, using a function named addMembers, specify
one or more Typecode objects that will be inserted inside it. The second one is based
on adding the inner typecode definitions as parameters in the createStruct function.

Now an example of each approach is shown:

• Creation using createStruct and then addMembers:

In the previous image, a structure is described containing an integer inside it.
First, an object instance of Typecode is created, and then the function
addMembers is used to add an integer data type inside it. If the user wants to
add more data definitions to the structure, they can be added later by calling
the same function (bearing in mind this means adding them immediately after
the ones that are already added).

In case a wrong call to this function is made by not specifying the destination
Typecode object of the structure, a WrongParamException object will be
thrown. On the other hand, if the user does not provide any Typecode objects
to insert, an exception object instance of NotEnoughParamsException will be

11

DynamicFastBuffers::Typecode *structTypecode;
structTypecode = DynamicFastBuffers::TypecodeAPI::createStruct();

DynamicFastBuffers::TypecodeAPI::addMembers(
structTypecode,
DynamicFastBuffers::TypecodeAPI::createInteger(),
NULL

);

thrown. Finally, if the destination Typecode object is not a structure type
description, the library will rise a WrongTypeException.

• Creation using only createStruct:

The other way of describing a structure is by adding the inner data types as
parameters when creating the object. An example of how to do this can be seen
in the next image:

Developers can add other Typecode objects (which may be created earlier and
then inserted in any order) when creating the typecode for describing the
structure data type. In this example, a structure containing an integer, a string
and another structure has been described.

Either the user chooses to use addMembers or the default function createStruct with
parameters to insert more data types into a structure definition, it is important to
know that the order of the insertions is determinant for the Typecode creation to be
successful. This means that the order must be the same as the order of the native data
in the user's application, otherwise serialization may fail.

Note that every call to createStuct or addMembers must have as last parameter a
NULL value, for there is no way of knowing how many objects the user wants to insert.

Array data definition:

Other complex data types that can be described are the arrays. An array is described by
the kind of data that it holds inside, and the length of its dimensions.

For example, an integer matrix with two rows and three columns will be described
using a Typecode object and specifying that it has two dimensions, having the first one
a length of two and the second one a length of three.

This concrete Typecode object can be created using the function named createArray,
defined in the TypecodeAPI class. This function receives as parameters a Typecode
object indicating the kind of data that will be stored inside it, followed by an integer
which specifies the number of dimensions. After that, the length of each dimension
has to be provided.

In the next image, a creation of a Typecode object that represents an array can be seen
as an example. The first parameter defines the type of data that the array will hold, in
this case long (64-bit integer) values. Afterwards, the first integer (two in this case)
specifies how many dimensions will be provided, being the next two integers the

12

DynamicFastBuffers::Typecode *structTypecode;
structTypecode = DynamicFastBuffers::TypecodeAPI::createStruct(

DynamicFastBuffers::TypecodeAPI::createInteger(),
DynamicFastBuffers::TypecodeAPI::createString(),
DynamicFastBuffers::TypecodeAPI::createStruct(

DynamicFastBuffers::TypecodeAPI::createShort(),
DynamicFastBuffers::TypecodeAPI::createDouble(),
NULL

),
NULL

);

respective lengths of each dimension. Finally, a zero value must be inserted in order to
know that no more dimensions are going to be specified.

In this function, if the number of dimensions (first integer) is lower than one, an object
instance of NotEnoughParamsException will be thrown. On the other hand, if any of
the dimension's length is lower than one (same case described before), a
WrongParamException exception object will be thrown. Finally, an object instance of
NotEnoughParamsException will be thrown if the number of dimensions defined is not
equal to the number of dimensions really inserted by the user.

Bear in mind that only simple types are allowed inside arrays, but not structures,
sequences or other arrays.

Sequence data definition:

The last complex data that eProsima DFB allows to describe are sequences. This kind of
type is represented in C++ as a vector of objects. These objects have to be simple data
types (except for std:string, which is not supported in the current version), and they
cannot be under any circumstance complex types.

A sequence is defined by using a typecode object for describing the kind of data that
will be stored inside, and an integer greater than zero which specifies the maximum
length of the vector that will hold the data. The function used to describe this kind of
data type is named createSequence, and it is also defined in TypecodeAPI class.

In this example, a sequence of twenty (at the most) short values is described. The first
parameter of the createSequence function is used to determine what kind of data type
is stored in the sequence, and the second one is the maximum number of data that can
be inserted in it.

2.1.1.5 Data description destruction
Once the user has created the typecode for the description of the native types used in
his application, the Typecode objects must be destroyed in order to not waste memory.

For doing this, a function named deleteTypecode is provided, which eliminates all data
reserved inside the Typecode object.

13

DynamicFastBuffers::Typecode *arrayTypecode;
sequenceTypecode = DynamicFastBuffers::TypecodeAPI::createArray(

DynamicFastBuffers::TypecodeAPI::createLong(),
2, 2, 3,
0

);

DynamicFastBuffers::Typecode *sequenceTypecode;
sequenceTypecode = DynamicFastBuffers::TypecodeAPI::createSequence(

DynamicFastBuffers::TypecodeAPI::createShort(),
20

);

In case of complex data types (structures, arrays and sequences), a single call to this
function giving as parameter the upper typecode will be enough to erase all reserved
space.

2.1.1.6 Calculating serialized data size
For calculating the size of the data before the serialization process, so that the buffer
could be initialized properly, a function named checkSerializedDataSize can be called.

This function receives a pointer to a Typecode object, and from this object the needed
buffer size will be calculated. If more than one Typecode object has been created, the
size of all of them must be added and stored in a variable, using it afterwards for the
buffer creation.

In case of std::string objects, which is a variable length data type, a fixed length of 255
Bytes will be used. If the size of the string object is greater than this value, eProsima
DFB does not guarantee that there will be enough reserved memory.

2.1.1.7 Example
Later in this document there will be added different examples for bytecode generation
and data serialization and deserialization. Due to this, a Typecode example object is
now defined, and this is the one that will be used from now on.

As it can be seen in the previous image, the typecode describes a structure with three
kinds of data types inside it, an integer, an std::string object and another structure. This
second structure has a short and a double data types inside.

14

DynamicFastBuffers::Typecode *sequenceTypecode;
sequenceTypecode = DynamicFastBuffers::TypecodeAPI::createSequence(

DynamicFastBuffers::TypecodeAPI::createShort(),
20

);

DynamicFastBuffers::TypecodeAPI::deleteTypecode(sequenceTypecode);

DynamicFastBuffers::Typecode *structTypecode;
structTypecode = DynamicFastBuffers::TypecodeAPI::createStruct(

DynamicFastBuffers::TypecodeAPI::createInteger(),
DynamicFastBuffers::TypecodeAPI::createString(),
DynamicFastBuffers::TypecodeAPI::createStruct(

DynamicFastBuffers::TypecodeAPI::createShort(),
DynamicFastBuffers::TypecodeAPI::createDouble(),
NULL

),
NULL

);

DynamicFastBuffers::Typecode *sequenceTypecode;
sequenceTypecode = DynamicFastBuffers::TypecodeAPI::createSequence(

DynamicFastBuffers::TypecodeAPI::createShort(),
20

);

int size = DynamicFastBuffers::TypecodeAPI::checkSerializedDataSize(typecode);

2.1.1.8 Limitations
The limitations for the typecode creation that must be deeply considered are the
following:

• While structure data types can have any other types inside, arrays and
sequences cannot have complex data types, neither string or boolean types
(not supported by now).

• Union or enum data types cannot be described using this version of eProsima
Dynamic Fast Buffers.

2.2 Generating a specific Bytecode given a Typecode object

Once the typecode for describing a concrete data type is created, the generation of a
bytecode associated to it is necessary to serialize data.

There are two kinds of bytecode entities that could be generated, one for doing data
serialization and another for data deserialization. This is so because the functions to
perform the operations are not the same, therefore a specific bytecode must be
created for each one.

The API class that holds the functionality for generating Bytecode objects is
DynamicFastBuffers::BytecodeAPI.

2.2.1 Bytecode for data serialization:
As it has been mentioned before, a specific bytecode for data serialization must be
created, different than the bytecode for data deserialization.

eProsima DFB provides a simple API for performing this task, by executing a mere
function in which users must tell the operation they want to execute by using a
parameter. Once the Typecode object is already available, the generation of a Bytecode
object must be done in the following way:

For the example shown in the last image, the typecode which describes the data
defined in the previous chapter has been used. The code above shows a call to a
function named generateBytecode, whose parameters are:

• structTypecode: The Typecode object already created.

• DynamicFastBuffers::flag::SERIALIZE: Constant value used to specify that the
generated bytecode is for doing data serialization.

By executing this function, the user receives an object instance of Bytecode class which
contains an internal structure. This structure is a list of pointers to the functions of
eProsima Fast Buffers API that must be executed for serializing the native data.

If a NULL value is inserted as first parameter, an exception will occur. This exception is
an object defined in this library, belonging to WrongParamException class.

15

DynamicFastBuffers::Bytecode *bytecode;
bytecode = DynamicFastBuffers::BytecodeAPI::generateBytecode(

structTypecode,
DynamicFastBuffers::flag::SERIALIZE

);

2.2.2 Bytecode for data deserialization:
The same way a bytecode is generated for serializing data must be done for
deserializing it. The function of the BytecodeAPI class that must be executed is the
same one that has been executed in the last example, but specifying a different flag.

An example of how to do this will be shown now:

In the last example, the same Bytecode object has been used. This can also be done,
but bearing in mind that its internal data will be overwritten, so it will not be valid for
doing data serialization.

The main difference between this two function calls is only the flag specified. In this
case the parameters are the following:

• structTypecode: The Typecode object previously created.

• DynamicFastBuffers::flag::DESERIALIZE: Constant value used to specify that the
generated bytecode is for doing deserialization.

By executing this function, the user receives an object instance of the Bytecode class
which contains an internal structure. This structure is a list of pointers to the functions
of eProsima Fast CDR API that must be executed for deserializing this kind of data.

If a NULL value is inserted as first parameter, a WrongParamException will be thrown.

2.3 Data serialization and deserialization
eProsima DFB provides an API that can be easily used for data serialization and
deserialization. For this matter, there are two functions defined inside the class named
DynamicFastBuffers::SerializerAPI.

In order to do the mapping of the native data into a buffer (where each serialized
datum will be stored), this types must be previously defined by coding them. For
example, if any user defines an integer value (int32_t), it can be then serialized by
creating a typecode description for this data, generating a bytecode then and using it
for doing the mentioned serialization. The same thing happens with other data types,
such as floating point numbers (float and double), structures, sequences, etc.

In the next examples, a FastCDR object will be used to store the serialized data. This
object must be created using the following functions:

2.3.1 Data serialization:
When it comes to data serialization, a function named serialize defined in the class
DynamicFastBuffers::SerializerAPI must be executed. This function receives as
parameters a void pointer to the native data, a Bytecode object previously generated

16

bytecode = DynamicFastBuffers::BytecodeAPI::generateBytecode(
structTypecode,
DynamicFastBuffers::flag::DESERIALIZE

);

char buffer[500];
eProsima::FastBuffer cdrBuffer(buffer, 500);
eProsima::FastCdr cdr(cdrBuffer);

using the BytecodeAPI member functions, and a FastCdr object created using eProsima
Fast CDR library.

An example of how to perform this action is shown in the next piece of code:

As it can be seen in the image above, the serialize function parameters are:

• (void*) &data: Void pointer to a variable named data, which is the native data
defined by the user.

• bytecode: A Bytecode object previously generated using generateBytecode
function from the class BytecodeAPI.

• &cdr: FastCdr object created using eProsima Fast CDR library.

Once this operation has been performed, all the user's data must be serialized inside
the buffer existent in the FastCdr object. To recover this data, a process of
deserialization must be done, which is explained in next section.

2.3.2 Data deserialization
Concerning data deserialization, another function provided by eProsima DFB must be
executed. This function is in the class DynamicFastBuffers::SerializerAPI, and its name is
deserialize.

The next image shows an example of how to deserialize the data:

As it can be seen in the image, the function's parameters are the same than in the
serialize function, but the procedure is different. In this case, the data already serialized
is located inside a FastCdr object, and the deserialization will be done into the object
pointed by the data variable. It does not matter which is the data type of the pointed
variable, as long as the typecode specified at the beginning of the execution is defined
according to this data.

17

DynamicFastBuffers::SerializerAPI::serialize(
(void*) &data,
bytecode,
&cdr

);

DynamicFastBuffers::SerializerAPI::deserialize(
(void*) &data,
bytecode,
&cdr

);

3 eProsima Dynamic Fast Buffers API
The API for accessing eProsima DFB is defined within three main classes. These classes
names are DynamicFastBuffers::TypecodeAPI, DynamicFastBuffers::BytecodeAPI and
DynamicFastBuffers::SerializerAPI.

The functions that conform the library's API are listed in next subsections. The behavior
for each function will not be described, for that has already been done in previous
chapters of this document.

3.1 Typecode creation API
Public functions located in DynamicFastBuffers::TypecodeAPI:

Function Description
static Typecode* createCharacter() Creates a Typecode object for a int8_t (char) native data type
static Typecode* createShort() Creates a Typecode object for a int16_t (short) native data

type
static Typecode* createInteger() Creates a Typecode object for a int32_t native data type
static Typecode* createLong() Creates a Typecode object for a int64_t native data type
static Typecode* createFloat() Creates a Typecode object for a float native data type
static Typecode* createDouble() Creates a Typecode object for a double native data type
static Typecode* createString() Creates a Typecode object for a std::string native data type
static Typecode* createBoolean() Creates a Typecode object for a bool native data type
static Typecode* createStruct(Typecode* init, …) Creates a Typecode object for a structure based on the

description of the inner data
static Typecode* createArray(Typecode *type, int
nDims,
 int dim1, …)

Creates a Typecode object for an array of based on the
description of its inner native data type, the dimensions and
the size of each dimension.

static Typecode* createSequence(Typecode *type,
 int maxLength)

Creates a Typecode object for a sequence based on the
description of its inner native data type and its length

static void addMembers(Typecode *dest, …) Adds a Typecode object into a predefined structure
description

static void deleteTypecode(Typecode *tc) Deletes a Typecode object
static int checkSerializedDataSize(Typecode *tc) Checks the size needed for serializing the data described by

the Typecode object received as parameter

3.2 Bytecode generation API
Public functions located in DynamicFastBuffers::BytecodeAPI:

Function Description
static Bytecode* generateBytecode(Typecode
*typecode, flag flag)

Generates a Bytecode object based on a Typecode
object received as parameter

3.3 Data serialization/deserialization API
Public functions located in DynamicFastBuffers::SerializerAPI:

Function Description
static void serialize(void *data, Bytecode *bytecode,
eProsima::FastCdr *cdr)

Serializes the data using a Bytecode object into a CDR
buffer

static void deserialize(void *data, Bytecode *bytecode,
eProsima::FastCdr *cdr)

Deserializes the data using a Bytecode object from a
CDR buffer

18

4 Known Issues
The only issue that has been found while designing this library is the following:

• eProsima Dynamic Fast Buffers does not guarantee a correct serialization or
deserialization of any data type if there is no match between the typecode
created for describing the mentioned data and the native data itself.

19

5 HelloWorld example in Visual Studio 2010
In this section an example will be explained step by step of how to create a new project
that uses eProsima DFB library on Visual Studio 2010. A complex structure data type
will be created and represented through a typecode. This data will be serialized and
deserialized in order to confirm the correct execution of the functions.

The example will be made and compiled for a 64-bit Windows 7 OS. And for that
reason a 64-bit architecture compilation of the library will be needed.

5.1 Setting up the environment
The first thing that must done is to create a new project named HelloWorldDFB and to
make sure that all references to the external libraries (in this case eProsima Fast CDR
and eProsima Dynamic Fast Buffers) are correctly set.

The linked library files will be in a folder which has to be included as an additional
directory. The library version will be automatically linked. Being this done, all classes
and headers from this projects can be accessed.

5.2 Including headers
In the file that contains the main function, which will be the entry point to the
application, some headers must be included.

5.3 Data declaration and “FastCdr” object creation
Open the Visual Studio 2010 solution HelloWorldDFB.sln. In the file where the function
named main is located, two tasks have to be done. The first one is to describe the
native data that will be serialized, in this case a structure (outside any function, in the
global scope):

This structure is formed by three inner variables, the first one is a short, the second
one is int32_t and the third one is an std::string object.

The second task is to declare and instantiate, inside the main function, a FastCdr object
with a FastBuffer inside it.

20

#include “FastCdr.h”
#include “TypecodeAPI.h”
#include “BytecodeAPI.h”
#include “SerializerAPI.h”

int main()
{

…
}

struct HelloWorldStruct{
short att1;
int32_t att2;
string att3;

};

char buffer[500];
eProsima::FastBuffer cdrBuffer(buffer, 500);
eProsima::FastCdr cdr(cdrBuffer);

By coding this three lines, a buffer with five hundred bytes has been declared and
inserted in the FastCdr object. It will be in this buffer where all the data is going to be
serialized and from which all data will also be deserialized.

At this point, two objects have to be created, one for reading the data for doing the
serialization procedure, and another in which the data will be recovered.

As it can be seen in the previous image, two structures have been declared. The one
named inputStruct is where all data will be initialized and read from. The other one,
named outputStruct is where data will be deserialized in the end.

5.4 Typecode creation
Once the data is defined, it must be described by creating an object instance of
Typecode class. The following code shows how to do it:

Note that the internal structure of the typecode is created with exactly the same data
types and exactly in the same order than the native ones. This must be done to ensure
the serialization process finishes successfully.

5.5 Bytecode generation
Now that the typecode that represents the native data defined by the user has been
created, it is time for the generation of a bytecode associated to it. In this case, two
Bytecode objects will be generated, one for data serialization and another for data
deserialization. Bearing in mind that the same object can be used for both operations,
but it has to be redefined for that purpose if that is the case.

As it can be seen in the image above, two objects have been created. The one named
serializationBytecode contains a few pointers to the functions used for data
serialization, and the other has the pointers to the functions for deserializing the data.

21

HelloWorldStruct inputStruct, outputStruct;
inputStruct.att1 = 10;
inputStruct.att2 = 2;
inputStruct.att3 = “Hello World!”;

DynamicFastBuffers::Typecode *structTypecode;
structTypecode = DynamicFastBuffers::TypecodeAPI::createStruct(

DynamicFastBuffers::TypecodeAPI::createShort(),
DynamicFastBuffers::TypecodeAPI::createInteger(),
DynamicFastBuffers::TypecodeAPI::createString(),
NULL

);

DynamicFastBuffers::Bytecode *serializationBytecode;
DynamicFastBuffers::Bytecode *deserializationBytecode;

serializationBytecode = DynamicFastBuffers::BytecodeAPI::generateBytecode(
structTypecode,
DynamicFastBuffers::flag::SERIALIZE

);
deserializationBytecode = DynamicFastBuffers::BytecodeAPI::generateBytecode(

structTypecode,
DynamicFastBuffers::flag::DESERIALIZE

);

5.6 Data serialization
For data serialization, a function named serialize which is defined within the class
DynamicFastBuffers::SerializerAPI will be used. The code for serializing data is shown
below:

As it has been mentioned in previous sections, note that the data defined by the user is
passed as a parameter by casting it into a void pointer, while its memory structure is
described in the bytecode.

5.7 Buffer reset
If the FastCdr object used for deserializing data is the same that has been used for
serializing it, the inner buffer of this object must be reset by executing the following
function:

5.8 Data deserialization and Typecode destruction
Finally, in order to do the data deserialization into a previously declared variable, the
deserialize function has to be invoked. The code for this call is shown next:

In the image above, after the execution of the deserialize function, all data that has
been serialized before will be recovered into the object pointed by the outputStruct
void pointer.

To not waste memory, a final call to deleteTypecode function defined in TypecodeAPI
class is done.

22

DynamicFastBuffers::SerializerAPI::serialize(
(void*) &inputStruct,
serializationBytecode,
&cdr

);

cdr.reset()

DynamicFastBuffers::SerializerAPI::deserialize(
(void*) &outputStruct,
serializationBytecode,
&cdr

);
DynamicFastBuffers::TypecodeAPI::deleteTypecode(structTypecode);

	eProsima Dynamic Fast Buffers
	1 Introduction
	1.1 Data Describing and Serializing
	1.2 Main Features

	2 Building an application
	2.1 Describing data through a Typecode
	2.1.1 Typecode creation syntax
	2.1.1.1 Simple types supported
	2.1.1.2 Complex types supported
	2.1.1.3 Simple data types description
	2.1.1.4 Complex data types definition
	2.1.1.5 Data description destruction
	2.1.1.6 Calculating serialized data size
	2.1.1.7 Example
	2.1.1.8 Limitations

	2.2 Generating a specific Bytecode given a Typecode object
	2.2.1 Bytecode for data serialization:
	2.2.2 Bytecode for data deserialization:

	2.3 Data serialization and deserialization
	2.3.1 Data serialization:
	2.3.2 Data deserialization

	3 eProsima Dynamic Fast Buffers API
	3.1 Typecode creation API
	3.2 Bytecode generation API
	3.3 Data serialization/deserialization API

	4 Known Issues
	5 HelloWorld example in Visual Studio 2010
	5.1 Setting up the environment
	5.2 Including headers
	5.3 Data declaration and “FastCdr” object creation
	5.4 Typecode creation
	5.5 Bytecode generation
	5.6 Data serialization
	5.7 Buffer reset
	5.8 Data deserialization and Typecode destruction

